基于孕灾环境和承灾体的居民住宅区暴雨内涝灾害损失评估研究
DOI:
作者:
作者单位:

1.淮河流域气象中心;2.安徽省气象灾害防御技术中心;3.安徽省气候中心;4.安徽省气象台

作者简介:

通讯作者:

中图分类号:

P426.616

基金项目:

国家自然科学基金U2342206,安徽省自然科学基金江淮气象联合基金2408055UQ006、2208085UQ12,中国气象局创新发展专项CXFZ2023J007, 中国气象局“揭榜挂帅”科技项目CMAJBGS202211,安徽省重点研究与开发计划项目2022m07020003


请扫码阅读

Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文以合肥市常青街道1000余幢居民住宅为研究对象,首先利用气象、水文、地理信息、社会经济及卫星遥感等多源数据,构建城市内涝数值模型。然后构建四种收入阶层的标准居家模型,针对易受内涝损失的六类财产,尝试利用合成曲线法拟合暴雨内涝中居民住宅损失的水深-损失率曲线。最后使用短时临近预报系统INCA(空间分辨率1公里,更新频次10分钟)驱动城市内涝数值模型,模拟未来6h的积水分布情景,结合已建立的水深-损失率曲线,得到未来6h居民住宅内涝灾害损失的分布图。本研究可根据INCA的更新频次动态预估未来6h内涝造成住宅财产损失的数量、分布情况,预报时间分辨率为小时,空间上精确到住宅楼,为确定防灾减灾的重点区域和重点保护对象等决策提供参考。

    Abstract:

    This study focuses on over 1,000 residential buildings in Changqing Subdistrict, Hefei City. A urban waterlogging numerical model was constructed using multi-source data, including meteorological, hydrological, geographic information, socio-economic, and satellite remote sensing data. Then, standard household models for four income levels are developed, and the synthetic curve method is applied to fit depth-loss rate curves for six types of properties vulnerable to waterlogging damage. Finally, the short-term forecasting system INCA (with a spatial resolution of 1 km and an update frequency of 10 minutes) is used to drive the urban waterlogging numerical model, simulating water accumulation scenarios for the next 6 hours. By integrating the established depth-loss rate curves, the distribution of residential waterlogging disaster losses over the next 6 hours is obtained. This study dynamically estimates the quantity and distribution of residential property losses caused by waterlogging over the next 6 hours based on INCA's update frequency. The forecast has a temporal resolution of one hour and is spatially precise down to individual residential buildings.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
文章历史
  • 收稿日期:2025-01-06
  • 最后修改日期:2025-06-17
  • 录用日期:2025-06-17
  • 在线发布日期:
  • 出版日期: