随机森林方法在酒泉地区总云量预报中的应用
DOI:
作者:
作者单位:

兰州大学 大气科学学院

作者简介:

通讯作者:

中图分类号:

P44

基金项目:

国家自然科学基金项目(42205083)


请扫码阅读

Application of Random Forest Approach for Total Cloud Forecasting in Jiuquan Area
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    云能够调节温度和湿度,其对农业、城市规划和航天航空等都有重要影响,但准确预测云量仍具挑战性。使用GRAPES(Global/Regional Assimilation and Prediction System)模式数据和FY-4A卫星数据,采用时间自适应方法、动态变参数方法以及随机森林方法建立云量预测模型,以提高云量预测的准确率。结果表明:酒泉及周边地区总云量日变化幅度不大,季节特征明显,春夏季多,秋冬季较少,并且北部云量较少,南部云量多。不同格点的云量受到不同因素的影响,本文使用动态变参数方法,即根据预报因子和云量相关性在不同格点上动态选取预报因子来构建随机森林模型,其准确率为0.55~0.80,这提高了云量预测的准确性。并且在此基础上,采用了时间自适应方法使得随机森林模型能够更新换代,但云量预测准确性在0.55左右,原因之一是数据量不足导致随机森林模型预测云量的准确率下降。

    Abstract:

    The role of clouds in regulating temperature and humidity is pivotal for various sectors such as agriculture, urban development, and aviation. Despite this, the precise forecasting of cloud cover remains a formidable challenge. This paper introduces a novel cloud prediction model that leverages the time-adaptive method, dynamic variable parameter method, and random forest method, along with data from the GRAPES (Global/Regional Assimilation and Prediction System) model and FY-4A satellite. The objective is to enhance the precision of cloud amount predictions. The study reveals that the daily fluctuations in total cloud cover in the Jiuquan region and its vicinity are relatively minor, yet they exhibit pronounced seasonal patterns, peaking in spring and summer and diminishing in autumn and winter. A spatial analysis indicates a gradient from fewer clouds in the northern areas to a higher concentration in the south. The cloud cover at various grid points is influenced by a multitude of factors. Employing the dynamic variable parameter method, this paper dynamically selects forecast variables based on their correlation with cloud cover at different grid points, which are then used to refine the random forest model. The model demonstrates an accuracy range of 0.55 to 0.80, thereby significantly elevating the precision of cloud amount forecasts. Furthermore, the incorporation of a time-adaptive method allows for the continuous updating of the random forest model. However, the cloud prediction accuracy hovers around 0.55, which may be attributed in part to the scarcity of comprehensive data, thereby impacting the model’s predictive capabilities for cloud amounts.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
文章历史
  • 收稿日期:2024-06-17
  • 最后修改日期:2025-03-21
  • 录用日期:2024-09-02
  • 在线发布日期:
  • 出版日期: