甘南州地质灾害气象风险预警模型研究
DOI:
作者:
作者单位:

1.甘肃省甘南州气象局;2.甘肃省玛曲县气象局;3.甘肃省天水市气象局;4.甘肃扣哒教育科技有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

甘肃省气象局“青藏高原东北边坡暴雪形成机理研究(Ms2022-06)”


请扫码阅读

Research on the Meteorological Risk Warning Model for Geological Hazards in Gannan Prefecture
Author:
Affiliation:

Gannan Meteorological Bureau of Gansu province

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用甘南州2015—2021年自动站、区域站逐日降水资料、2015—2021年地质灾害实况资料,以两种方法建立基于降水资料的甘南州地质灾害气象风险第二代显示统计预警模型,研究动态降水诱发地质灾害的可能性,进而为地质灾害防治决策提供技术参考,对减轻以降水为主要诱因的崩塌、滑坡、泥石流等突发性地质灾害造成的经济损失与人员伤亡,具有非常重要的意义。方法一:以信息量法对甘南州地质背景危险性做出定量评价,以地灾发生前有效降水、当天最大小时降水、当天累计降水为自变量,分别对不同危险区域拟合不同的线性方程,建立甘南州地质灾害气象风险预警模型。方法二:以甘南州坡度、坡向、地形起伏度、地层岩性、断裂构造、河流水系、人类工程活动等7项因子为评价指标,用机器学习方法,采用BP神经网络算法程序,设置学习步长,得出地质灾害潜势度概率量化值,将其与降水因子进行耦合,建立甘南州地质灾害气象风险预警模型。

    Abstract:

    Using the daily precipitation data of Gannan 2015-2021 automatic station, regional station, and the 2015-2021 geological disaster data, based on the precipitation data, the second generation display statistical early-warning model of geological hazards in Gannan Prefecture is established to study the possibility of geological hazards induced by dynamic precipitation, it can also provide technical reference for the prevention and control of geological disasters, and reduce the economic losses and casualties caused by sudden geological disasters such as collapse, landslide and debris flow, which are mainly induced by precipitation, is of great significance. Method 1: to quantitatively evaluate the geological background risk of Gannan Prefecture by using information quantity method, taking the effective precipitation before the disaster, the maximum and minimum precipitation on the same day, and the accumulated precipitation on the same day as the independent variables, by fitting different linear equations to different risk areas, the meteorological risk early-warning model of geological hazards in Gannan Prefecture was established. Method 2: take the slope, aspect, relief degree, stratum lithology, fault structure, river system and human engineering activity as evaluation indexes, and use machine learning method, by using BP neural network algorithm program and setting the learning step, the probability quantization value of geological hazard potential degree is obtained, and coupled with precipitation factor, the geological hazard meteorological risk early-warning model of Gannan Prefecture is established.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
文章历史
  • 收稿日期:2024-02-27
  • 最后修改日期:2024-11-22
  • 录用日期:2024-07-18
  • 在线发布日期:
  • 出版日期: